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1. Introduction

Probably the most important problem in the quantum logic approach to
general quantum mechanics is to find physically reasonable postulates for a
quantum logic so that it may be represented by the logic of all closed sub-
spaces of a Hilbert space. Practically all investigators in this field have at
least considered this problem (cf. Birkhoff & von Neumann, 1936; Gudder,
1969, 1970; Gunson, 1967; Jauch, 1968; Mackey, 1963; Macl.aren, 1964;
Piron, 1964; Pool, 1968b; Varadarajan, 1968; Zi:rler, 1961). The best
result known to this author is due to Piron (1964) (with the help of Araki &
Varadarajan, 1968) and is based on the fundamental theorem of projective
geometry. He is able to construct a Hilbert space projective representation
for so-called projective logics where a projective logic L is an orthomodular
complete atomic lattice which satisfies:

(i) if a # 0in L is the supremum of a finite set of atoms then [0,a] is a
geometry of finite rank; '
(ii) if x,aeL,a+#0, #1 and x is an atom, then there are atoms y,
zeLsuchthaty<a,z<d andx<yv z;
(iii) there is at least one a € L such that 4 < dim (@) < =.

In the author’s opinion Axiom (i) is particularly unfortunate, since it
requires that the lattice [0, ] be modular, and there seems to be no physical
justification for such an axiom.

In this paper the author suggests some axioms which he feels are physically
more reasonable and which imply some of those given above. (In particular
that L is a complete atomic lattice satisfying (i).) These new axioms deal
with superpositions of states and the superposition principle.

2. A Superposition Principle

Let L be an orthocomplemented poset. That is, L is a partially ordered sct
with first and last elements 0, | respectively and a complementation ¢ - a@’
satisfying (i) a" = q, (ii)av a’ = 1, (iii) if a < b, then b’ < a’. We also assume
that if a, is a sequence of mutually disjoint elements (i.e., a, < a,, i #)),
then Va, exists. A map m from L into the real unit interval [0,1] which

99



100 STANLEY P. GUDDER

satisfies m(1) = 1 and m{Va,) = 3 m(a)) if the a,’s are disjoint is a state on
L. If m is a state which cannot be written in the form m = cmy + (1 — ¢)my,
where 0 < ¢ < 1 and m; and m, are distinct states, then m is called a pure
state. We denote the set of states on L by A and the set of pure states on
LbyP.IfacL,me P,defineP,={meP:m(@a)=1},L,={acL:m(a)=1}.
If P,< P, implies a< b and L,, S L, implies m; =m,, we call (L, M) a
quantum logic. We say that a, b€ L are compatible if there are mutually
disjoint elements a,, b,, ¢ such that a=a, v c and b = b, v c. In the sequel
(L, M) will always denote a quantum logic. _

IfSc M, acL we write S(u)=a if m@)=a forall me §. If S< M,
mg € M, then my is a superposition of states in S if S(a) = 0 implies mig(a) =0
forallae L. If S < P we denote by S~ the set of all pure states which are
superpositions of states in S, and we define .4 = {S < P:S = $~}. Under set
inclusion .# becomes a poset with first and last elements 4, P respectively.
We say that the superposition principle holds in (L, M ) if A is isomorphic to
L, i.e., if these exists a one-one map from .# onto L that preserves order.
(This definition is due to Varadarajan, 1968.) It is shown by Gudder (1969)
that . is a complcte atomic lattice. We thus have the following theorem.

Theorem 2.1

If the superposition principle holds in (L, M) then L is a complete atomic
lattice.

We also have a kind of converse to Theorem 2.1. If L,, L; are two ortho-
compiemented posets we say they are isomorphic if there is an order and
complementation preserving isomorphism from L, onto L,.

‘Theorem 2.2

If (L, M)is aquantum logic and L is a complete lattice for which m(a,) = 1,
a € A, implies m(Aa,) =1, then .# has an orthocomplementation and
L and .# are isomorphic. In particular the superposition principle holds
in (L, M).

Proof: for Se # let ag=A{ae L:S{a)=1}. Then as e L is the smallest
element for which S(as) = 1. Define S’ = {m € P:m(as) =0}. Then S’ € . 4.
Suppose m{as) =1, me P. If S(b) =0, then S(b') =1, so a5 < d". Hence
m(b") =1 and m(b) = 0. Since § = S~ we have m € §, and hence m(as) = |
if and only if m € 5. We now show that § > as is an 1somorphism of .4
onto L. Suppose S, S; €4 and S, # S,. If me S, and m¢ S,, then
m(as) = 1, while m(as,) # 1. Thus, as, #as, and the map is one-one.
letaeLand S=L,e# If S=¢, thena=0and a=ay If S#¢ we
claim that a = as. Certainly ag < a. If ag # a, then there is my € P such that
mo(a) =1 and mglas) # 1. But my e S, which is a contradiction. Now
suppose S; € 5. If sn € P and m{as,) = 1, then m € §,. Hence, m€ S, and
m(as,) = 1. Therefore, as, < as,. Conversely, suppose a5 <as,. If me §;,
then m(as)) = 1, so m(as,) = 1. Therefore, m € S and S, < ;. Finally, the
following statements are equivalent: m(as’) =1, mlas)=0, me§’,
mag.) = 1, for m € P. Hence ag’ = as..
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The condition in this theorem that m(a,) =1 implies m(Aa,) =1 has
been used by Jauch (1968) and Piron (1964) in their formulation of quantum
mechanics.

3. Modularity

In the sequel we assume that (L, M) is a quantum logic in which the super-
position principle holds. In the last seciion we showed that L is then a
complete atomic lattice. Notice that under the isomorphism pure states in Af
correspond to atomsin L,

We say that m e P is a minimal superposition of mye P, i=1, ..., n, if
me{m;i=1, .., n}" but mé¢ {m:i+#j}" for any j=1, ..., n. Our next
postulate is called the minimal superposition postulate: if m is a minimal
superposition of my, ...,m,and (1, J)isa partitionof {1, ...,n}(i.e{l;...,n} =
TV INT=¢;I,J#¢), then {m, mi:ieI}” N{m;:jeJ} # ¢. Our only
comment on the physical nature of this postulate is that it is intuitivery
fairly clear. Indeed, suppose me {m;:i=1, ..., n}~ is a minimal super-
positionand (1, J)isapartitionof {1, ..., n}. If {m, m;zie I}~ N{m,:je J} =
¢, then superpositions of m, m,, i € I are not in {m;:j€J}" and arc thus
‘independent’ of my, j € J. Thus m,, j € J are not needed to describe super-
positions of m, m,, i € I'so we would havem € {m,:i € I}, which contradicts
the minimality,

Notice that the minimal superposition postulate holds in the usual
Hilbert space framework. Indeed, in this case m, m,, i =1, ..., n may be
represented by unit vectors ¢, ¢, i = 1,...,n. mis aminimal superposition
ofm,i=1,...,n wehave

¢ ‘=.§l ad

for non-zero complex numbers ¢, and distinct vectors ¢, i=1, ..., n. Then
for any partition (f,J) of {1, ..., n} we have

é~ 2’ i =J§J <9,

Normalizing the vector

2 ¢y
J&J

we get a pure state in {m,m;:ie I} N {m,:jelt}".
In the lattice L we say that an atom a is a minimal superposition of atoms
By ouey Gy if

acg \./ a;
t=l
but

ag v a,
t4j
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for any j = 1, ..., n. The minimal superposition postulate is thus equivalent

to the following statement: if a is a minimal superposition of g, ..., a,,
then for any partition (1, J) of {1, ..., n} we have

(av Vv a,);\ (,V a,) #0
tel €t

The main result of this section is that the minimal superposition postulate
on (L, M) implies [0,a] is modular for any a of finite rank. Let us now
demonstrate that the converse holds. That is, let .2 be a modular lattice
with a first element 0 and let g, q;, ..., g, be atoms in Z. Suppose

L]
a< Va
1-1
is a minimal superposition. Now assume (7, J) is a partition of {1, ..., n}

and that
(av v ‘a,)A (_,V a,) =0
tel €J

Then by the modular law we have

a<(av Va,\A(Va,v Va,)=[(av v a,)i\ Vv a,]v Va,=V q

iel JeJ tel ielr el iel tel
which is a contradiction. Hence

(av A% a,)A (,V a,)#O
tel €J

and the minimal superposition postulate holds.

In the sequel we assume that (L, M) is a guantum logic in which the super-
position principle and the minimal superposition postulate hold. We say
that atoms a e L, i=1, ..., n are independent if a, £ V {a,:j +# i} for any
i=1,...,n

Lemma 3.1
Suppose a,, ..., a, are independent atoms and b is an atom. If ¢, < bv
a;v v a, then

-
b V a
=1

Proof: There is a minimal subset I < {2, ..., n} such that

a|<bv V a'
te?

Since this is a minimal superposition it follows from the minimal super-
position postulate that

ba (av v a,)#o

iel
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Since bis an aiom
d< V g
-1

Corollary 3.2
If ay, ..., a, are independent atoms and b is an atom satisfying

b \./ a
=1

then {b,a,:i=1, ..., n} are independent. We say that a finite set of atoms
a,,....a,isabasisforae Lifa,,...,a,are independent and

Lemma 3.3

Leta,,...,a beabasisforae L. Letb,, ..., b, be atoms in g and suppose
n>r.Then by, ..., b, are not independent.

Proof: Suppose by, ..., b, are independent. Now
<V g
t=1

and there is a minimal subset J, < {1, ..., r} such that

bl [ Va‘
iel

Without loss of generality assume 1 € I;. Then b, ¢ V {a,:je I, — {1}} and
by Corollary 3.2, {b,a,:i € I, — {1}} are independent. Applying Lemma 3.1
we have a; < b, v V {a;:je I, — {1}} and hence

r
a=bvVa
1=2
Continuing by induction, suppose

r
a=bvbv---vhv V g
=i+l

Then

bu,] <b‘V...Vb,V V a‘
=i+l

Then there are minimal subsets I ., = {{+1,...,r}and J< {1, ..., [} such
that
b|+] < v ij \' {a‘:i€l‘+|}
Jedt
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Without loss of generality assume I+ 1 € /,,,. It follows from minimality
that {b,,a,:j€J, i€ I,,} are independent. Then

b V bvViatiel,, —{I+1}}
JeJ

and from Corollary 3.2 {b,,,,b,,a,:j€ J, i € I}, — {I + 1}} are independent.
Again by Lemma 3.1,

14y <b“,| v ‘\/“r bJV \' {a[:ie I‘+| - {I+ l}}
€
Hence

r
a’—"blv...Vb“,lV v a;
=142

By induction we then find that

r
a= V b‘
=1
But then

4
br+l <V bl
1=t
which is a contradiction. Hence by, ..., b, are not independent.

Corollary 3.4

If {a;;i=1,...,r}and {b;:i =1, ..., n} are bases for g, then r = n.

Ifa € L has a basis @y, ..., a,, then n is the dimension of a and denoted by
d(a) = n. If a has a basis we say that a is finite dimensional. A set of atoms
a;<a,i=1,. .., nisamaximal set of independent atoms if they are indepen-
dent and not in a larger set of independent atoms in a. If @ < b we use the
notationb—a=>baa'.

Lemma 3.5
Ifa,<a, i=1, ..., r is a maximal set of independent atoms, then a,,
i=1,...,r,isabasis for a.

Proof: Suppose

\'/ a,<a

-1
Then there is an atom

bea- \'/ a
£t

Then

b { Q a;

f=1

and by Corollary 3.2 {b,a,:i= 1, ..., r} are independent which is a contra-
diction.



PROJECTIVE REPRESENTATIONS OF QUANTUM LOGICS 105

Corollary 3.6
If

4
a=1V a
-1

where the a,’s are atoms, then a is finite dimensional.

Proof: Find a subset of {a,:i = 1, ..., n} which forms a basis for a.

Corollary 3.7
Ifd(a) =nanda,i=1\,...,n areindependentatoms,then {a,:i =1,..., n}
is a basis for a.

Proof: I a,, ..., a,, b are independent for some atom b < a we get a contra-
diction to Lemma 3.3. Therefore, a,, ..., a, is 2 maximal set of independent
atoms and by Lemma 3.5 must be a basis.

Corollary 3.8
If a < band d(a) = d(b), thena = b.

Proof: Let a,, ..., a, be a basis for a. Then by corollary 3.7, a4, ..., a,is 2
basis for b, and hencea = b.

Corollary 3.9
If a < b and b is finite dimensional, then d{a) < d(b).

Proof: Suppose r = d(b) and a,, ..., a, are independent atoms in a, where
a>r. This would contradict Lemma 3.3. Hence every maxima! set of
independent atoms in a has at most r clements. Applying Lemma 3.5,
da<r.

Recall that a dimension function d on a lattice .Z is a real valued function
on % with the properties: (i) d(0) =0, d(a) » 0, for allae Z; (i) ifa < b
and a# b, then d(a) < d(d); (iii) d(av b) + d(a b) =d(a) + d(b) for all
a,be .

Theorem 3.10
lLet ¢ € L be finite dimensional. Then d is a dimension function on [0,c].

Proof: Property (i) is trivial, and (ii) follows from our previous corollaries.
We now prove property (iii). Suppose a, b € [0,c] and aa b = 0. Let {a,} be
a basis for a and {b,} a basis for b. Thenav b=V a,v V b,. Now suppose
{a,,b,} are not independent. Then there’is a b,, say, such that

b<Vav V b
1%k

There are minimal index sets 7, J such that
bh<Vav Ve,
Jed

el
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Now from the minimality of 7 and J we have that {a,,b,:i€ I, je J} are
independent and by the minimal superposition postulate

(v.a)roveierumyzo

This contradicts a » b = 0, so {g,,5,} are independent and hence form a basis
for av b. Thus d(av b) + d(a a b) = d(ay + d(b) in this case. In the general
case we have

avbhb=[a—arb)v{arb)]v(b—anb)v(aab)]
=(@—aAb)vigab)v(b—anb)

Now
(@a—arbD)apb—avb)=[ar(aaby]albar(@aab)}=(cAb)a(anb)y=0
Thus by our previous work

d(av b)=d(a—anb)+d{anb)+d(b—anb)=d(a)+ d(b) ~ d(a b)

Since modularity and the existence of 2 dimension function are equivalent
(Varadarajan, 1968) we have the following corollary.

Corollary 3.11
If a € L is finite dimensional, then [G,a] is a modular lattice.

4. Conclusions

We say that (L, M) is completely irreducible if for any interval [0,a]< L
the only elements cf [0,a] which are compatible with all elemcnts of [0,4]
are 0 and a. This corresponds physically to the fact that there are no super-
selection rules in [0,a] for all ae L. It follows {cf. Varadarajan, 1968,
Lemma 2.10)if (L, M) is completely irreducible and satisfies the assumptions
of the previous section, that [0,a]} is a geometry for any finite dimensional
element a € L. We now have the following representation theorem.

Theorem 4.1

Let (L, M) be a completely irreducible quantum logic which satisfies the
superposition principle, the minimal superposition postulate and suppose
there is an a € L with 4 < d(a) < . Then there exists a division ring D,
an involutive anti-automorphism 8 of D, a vector space ¥ over D, and a
definite symmetric 8-bilinear form ¢{-,*) on ¥ x ¥ such that L is isomorphic
to the orthocomplemented lattice of all {-,-) closed subspaces of V.

In this theorem we have defined {,-) closed subspaces in the following
way. If T'is a subspace we define T+ = {u e V:{u,x) =0forall x e T} and
Tis {,*) closed if T=T++. For the proof of this thcorem the reader is
referred to Varadarajan (1968, p. 173).

It is, of course, important to obtain more information about the division
ring D. It is a classical result that if D has certain regularity properties
(which it must in physical situations) then D is either the reals R, the
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complexes C, or the quaternions Q. For example, it is proved by
Pontryagin (1932) that if D is a connected locaily compact division ring in
which addition and multiplication form topological groups, then D is R,
C or Q. It can be shown (Varadarajan, 1968) that the division ring D in
Theorem 4.1 is unique up to isomorphism. We call this essentially unique
division ring the division ring associated with (L, M).

Theorem 4.2

Let (L, Af) be a quantum logic satisfying the hypotheses of Theorem 4.1
and also the following two conditions: (i) the division ring D associated
with (L,M)is R, Cor Q; (i) ifa,beL,a+0, #1 and bis an atom, then
there are atoms b,, b, € L such that b, <a, b, <a’and b < b, < b,. Then L
is isomorphic to the set of all closed subspace of a Hilbert space over D.

Tt is clear that the conditions given above are also necessary. For a proof
of this theorem see Varadarajan (1968, Theorem 7.44).

S. Remarks

The hypotheses of Piron’s theorem are stated differently by Piron (1954)
than by Varadarajan (1968). The main difference is that Axiom (i) of
Section 1 is replaced by the covering law: if ais ap atomand b<c<bv a,
then ¢ = bor ¢ = bv a. Piron shows that the covering law implies Axiom (i).
However, the auther has seen no phenomenological justification for the
covering law, so it seems to have no advantage over Axiom (i).1 In any case
our minimal superposition postulate can be used as an alternative to the
covering law. A closely related axiom is the semi-modularity, which states
that if (a,b) is a modular pair then so is (b,2). Pool (1968b) has given a
physical justification for this axiom, but again his justification relies on
addition axioms which are questionable.

One can note that our map S — S~ on subsets of P is a closure operation
and that our minimal superposition postulate is closely related to the
MacLane-Steinitz exchange axiom (Crapo & Rota, 1968). Thus the theory
presented here is closely related to the theory of combinatorial geometries.

Finally, we would like to mention that the axiom L,, <L, implies
m; = m, is not essential for this theory, and is included only to avoid certain
minor technicalities. It is used only to prove that .# is atomic. However, it
can be shown that if this axiom does not hold .# can be embedded in a
unique smallest atomic lattice.
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